Lösungen (Teil mit Hilfsmitteln-Teil2)

Aufgabe 2

a) Richtungsvektor von g_4 : $\begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$ Richtungsvektor von $g_{0,5}$: $\begin{pmatrix} 0,5 \\ 1 \\ -1,5 \end{pmatrix}$

Es gilt:
$$\begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 0,5 \\ 1 \\ -1,5 \end{pmatrix} = 2 + 1 - 3 = 0$$

Somit sind die Geraden orthogonal.

b)
$$\sin(\alpha) = \frac{\begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -6 \\ 2 \end{pmatrix}}{\sqrt{16+1+4} \cdot \sqrt{9+36+4}} = \frac{10}{\sqrt{21} \cdot 7} \approx 0.312$$

$$\alpha = \sin^{-1}(0.312) = 18.2^{\circ}$$

c) Punktprobe mit O(0|0|0):

Aus Zeile 2 folgt: t = -2

Aus der Zeile 1 folgt: $1-2a=0 \Leftrightarrow a=0,5$

Kontrolle mit Zeile 3: 5-2(0,5-2)=0 ist eine falsche Aussage

Es gibt keine Gerade, die den Ursprung enthält.

d) Wähle zwei beliebige Geraden:
$$g_0 : \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$$
 und $g_2 : \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$

Gleichung der Ebene F, die die beiden sich schneidenden Geraden enthält:

$$F: \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

Normalenvektor von F:
$$\vec{n} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -2 \end{pmatrix}$$
 bzw. $\vec{n}^* = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$

Ansatz für die Koordinatengleichung F: $x_1 - 2x_2 - x_3 = d$ Einsetzen von P(1|2|5) ergibt d = -8.

Koordinatengleichung: F: $x_1 - 2x_2 - x_3 = -8$

e) Die Punkte $P_r(1+r|2-2r|5-r)$ liegen auf einer Gerade mit folgender Gleichung:

n:
$$\vec{x} = \begin{pmatrix} 1+r \\ 2-2r \\ 5-r \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$$

Der Richtungsvektor der Geraden ist ein Normalenvektor von F. Damit ist die Gerade orthogonal zur Ebene F.

 f) Aus d) folgt: Alle Geraden g_a liegen in der Ebene F und enthalten den Punkt Q(1|2|5).

Die Punkte P_r liegen auf der Gerade n aus e). Auch die Gerade h enthält den Punkt Q(1|2|5).

Somit ist der gesuchte Abstand
$$\left| \overrightarrow{QP_r} \right| = \begin{pmatrix} r \\ -2r \\ -r \end{pmatrix} = \sqrt{r^2 + 4r^2 + r^2} = \sqrt{6r^2} = r \cdot \sqrt{6}$$

Die Aussage ist wahr.

g) Einsetzen der Gerade k in die Koordinatengleichung von F:

$$(1+s)-2\cdot 2-(5+s)=-8$$

 $\Leftrightarrow 1+s-4-5-s=-8 \Leftrightarrow -8=-8$

Da sich eine wahre Aussage ergibt, liegt die Gerade k in der Ebene F.

Die Gerade k ist parallel zur x_1x_3 -Ebene, da die zweite Koordinate im Richtungsvektor 0 ist.

Da bei der Geradenschar g_a die zweite Koordinate im Richtungsvektor nicht null ist, gibt es keine Schargerade, die parallel zur x_1x_3 -Ebene ist.

h) Alle Geraden g_a liegen in der Ebene F. Somit ist h die Schnittgerade von F mit der x_4x_2 -Ebene.

Die Spurpunkte von F lauten $S_1(-8|0|0)$ und $S_2(0|4|0)$.

Somit lautet die Gleichung von h:
$$\vec{x} = \begin{pmatrix} -8 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 8 \\ 4 \\ 0 \end{pmatrix}$$

Die Gerade k aus g) liegt in der Ebene F. Die Gerade k hat mit jeder Gerade g_a aber nur den Punkt P(1|2|5) gemeinsam und liegt nicht in der Schar g_a .

Berechnung des Schnittpunktes von k mit der x₁x₂-Ebene:

$$x_3 = 5 + s = 0 \Leftrightarrow s = -5$$

Einsetzen von s = -5 in k ergibt Punkt S(-4|2|0).

Kontrolle, dass der Punkt S auf h liegt:

$$\begin{pmatrix} -4 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} -8 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 8 \\ 4 \\ 0 \end{pmatrix}$$
 ist eine wahre Aussage für t = 0,5.

Somit ist S der gesuchte Punkt.

Aufgabe 3

a) Beschreiben Sie die besondere Lage der Gerade h im Koordinatensystem.

Da die x_1 -Koordinate des Richtungsvektors von h gleich Null ist und die x_1 -Koordinate des Stützvektors von h ungleich Null ist, verläuft die Gerade h parallel zur $x_2 - x_3$ -Ebene.

Zeigen Sie, dass die Gerade h zur Schar gagehört.

Es muss einen Wert von geben, so dass der Richtungsvektor von h ein Vielfaches zum Richtungsvektor von ga ist.

Dies ist für a = 0 der Fall, hier stimmen die beiden Richtungsvektoren überein.

Kontrolle ob der Punkt P(1|-6|0) auf der Gerade go liegt:

$$\begin{pmatrix} 1 \\ -6 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix}$$

1.Zeile: 1 = 1

2.Zeile: $-6 = 3t \Leftrightarrow t = -2$ 3.Zeile: $0 = -2 - t \Leftrightarrow t = -2$

Da das Gleichungssystem die Lösung t = -2 besitzt, liegt P(1|-6|0) auf h. Damit sind die Geraden h und g_0 identisch.

Bestimmen Sie eine Koordinatengleichung der Ebene E.

Um zwei Spannvektoren der Ebene E zu ermitteln, wählt man für a zwei verschiedene Werte, z.B. a = 0 und a = 1.

Spannvektoren der Ebene:
$$\overrightarrow{u_0} = \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix}$$
 und $\overrightarrow{u_1} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$

Normalenvektor von E:
$$\vec{n} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$$

Ansatz Koordinatengleichung: E: $x_2 + 3x_3 = d$

Einsetzen des Punkts Q(1|0|-2) in E: -6 = dKoordinatengleichung: E: $x_2 + 3x_3 = -6$

b) Bestimmen Sie denjenigen Wert von a, für den g_a die x₂-Achse schneidet.

Gleichung der
$$x_2$$
 -Achse: $k : \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

Gleichsetzen der Geradengleichungen von k und ga:

$$\begin{pmatrix} 0 \\ s \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + t \cdot \begin{pmatrix} a \\ 3 \\ -1 \end{pmatrix}$$

1.Zeile: $0 = 1 + a \cdot t$ 2.Zeile: s = 3t

3.Zeile: 0 = -2 - t

Aus der 3.Zeile: t = -2

Aus der 2.Zeile folgt dann s = -6

Aus der 1.Zeile folgt dann a = 0,5.

Ermitteln Sie die zugehörigen Werte von a.

$$\cos(45^{\circ}) = \frac{\begin{vmatrix} 0 \\ 3 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} a \\ 3 \\ -1 \end{vmatrix}}{\begin{vmatrix} 0 \\ 3 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} a \\ 3 \\ -1 \end{vmatrix}} \Leftrightarrow \frac{1}{2}\sqrt{2} = \frac{10}{\sqrt{10} \cdot \sqrt{a^{2} + 10}} \quad | \cdot 2 \cdot \sqrt{10} \cdot \sqrt{a^{2} + 10}$$

$$\Leftrightarrow \sqrt{2} \cdot \sqrt{10} \cdot \sqrt{a^2 + 10} = 20$$
 | quadrieren

$$\Rightarrow$$
 20 · $(a^2 + 10) = 400$

$$\Leftrightarrow$$
 $a^2 + 10 = 20$

$$\Leftrightarrow a^2 = 10$$

$$\Rightarrow$$
 a = $\pm\sqrt{10}$

c) Bestimmen Sie eine Gleichung einer Gerade, die von allen Geraden der Schar g_a den Abstand √40 besitzt und zu allen Geraden der Schar g_a windschief verläuft.

Alle Geraden der Schar befinden sich in der Ebene E: $x_2 + 3x_3 = -6$.

Da die gesuchte Gerade von allen Geraden den Abstand $\sqrt{40}$ hat muss die Gerade in einer Ebene F liegen, die parallel zu E ist und von E den Abstand $\sqrt{40}$ hat.

Ansatz für die Koordinatengleichung von F: $x_2 + 3x_3 = d$

HNF von F:
$$\frac{x_2 + 3x_3 - d}{\sqrt{10}} = 0$$

Für den Punkt Q(1|0|-2) soll gelten: $d(Q,F) = \sqrt{40}$

$$d(Q,F) = \left| \frac{-6 - d}{\sqrt{10}} \right| = \sqrt{40}$$

Daraus folgt $\left| -6 - d \right| = 20$

Eine mögliche Lösung ist d = 14.

Die gesuchte Gerade liegt in der Ebene F: $x_2 + 3x_3 = 14$

Für den Richtungsvektor $\vec{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ der gesuchten Geraden gilt:

1.) Richtungsvektor ist orthogonal zum Normalenvektor von F:

$$\begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \Leftrightarrow y + 3z = 0 \Leftrightarrow y = -3z$$

2.) Richtungsvektor ist kein vielfacher Vektor von $\begin{pmatrix} a \\ 3 \\ -1 \end{pmatrix}$ für alle Werte von a:

$$\begin{pmatrix} a \\ 3 \\ -1 \end{pmatrix} \neq k \cdot \begin{pmatrix} x \\ -3z \\ z \end{pmatrix}$$

Diese Ungleichung wird nur für z = 0 erfüllt. Der Wert von x kann beliebig sein, allerdings nicht x = 0.

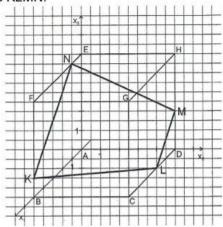
Möglicher Richtungsvektor der gesuchten Geraden:
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Ein Punkt auf der Ebene F lautet z.B. T(0|14|0), den man als Punkt der gesuchten Geraden wählen kann.

Eine mögliche Gleichung der gesuchten Geraden ist
$$\vec{x} = \begin{pmatrix} 0 \\ 14 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Aufgabe 4

a) Zeichnung des Vierecks KLMN:



Nachweis, dass das Viereck ein Trapez ist:

Es gilt
$$\overline{KN} = \begin{pmatrix} -4 \\ 0 \\ 4 \end{pmatrix}$$
 und $\overline{LM} = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}$

Die Vektoren sind vielfache zu einander, daher sind sie parallel und es liegt ein Trapez vor.

Nachweis, dass zwei Seiten gleich lang sind:

$$\begin{vmatrix} \overrightarrow{\mathsf{KL}} \end{vmatrix} = \begin{vmatrix} -3 \\ 5 \\ -1 \end{vmatrix} = \sqrt{9 + 25 + 1} = \sqrt{35} \qquad \qquad \begin{vmatrix} \overrightarrow{\mathsf{MN}} \end{vmatrix} = \begin{vmatrix} 1 \\ -5 \\ 3 \end{vmatrix} = \sqrt{1 + 25 + 9} = \sqrt{35}$$

Gleichung der Ebene T in Parameterform:

$$T\colon \ \vec{x} = \overrightarrow{OK} + r \cdot \overrightarrow{KN} + s \cdot \overrightarrow{KL} = \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} -4 \\ 0 \\ 4 \end{pmatrix} + s \cdot \begin{pmatrix} -3 \\ 5 \\ -1 \end{pmatrix}$$

Koordinatengleichung von T:

Normalenvektor von T:
$$\vec{n} = \begin{pmatrix} -4 \\ 0 \\ 4 \end{pmatrix} \times \begin{pmatrix} -3 \\ 5 \\ -1 \end{pmatrix} = \begin{pmatrix} -20 \\ -16 \\ -20 \end{pmatrix}$$
 bzw. vereinfacht $\vec{n} \neq \begin{pmatrix} 5 \\ 4 \\ 5 \end{pmatrix}$

Ansatz für Koordinatengleichung: T: $5x_1 + 4x_2 + 5x_3 = d$ Einsetzen des Punktes K(5|0|1): $25 + 5 = 30 \Rightarrow d = 30$

Koordinatengleichung von T: $5x_1 + 4x_2 + 5x_3 = 30$

Schnittpunkt von T mit der x_1 -Achse: $S(x_1|0|0)$ ergibt S(6|0|0)

b) Koordinaten von F: F(5|0|5)

Die Strecke
$$\overline{FG}$$
 liegt auf der Geraden g: $\vec{x} = \overline{OF} + t \cdot \overline{FG} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 5 \\ 0 \end{pmatrix}$

Der Punkt F wird erreicht für t = 0 und der Punkt G wird erreicht für t = 1.

Ein allgemeiner Punkt auf der Strecke \overline{FG} hat die Koordinaten S(5|5t|5) mit $0 \le t \le 1$.

HNF von T:
$$\frac{5x_1 + 4x_2 + 5x_3 - 30}{\sqrt{66}} = 0$$

Abstand des Punktes S von der Ebene T:

$$d(S,T) = \left| \frac{5 \cdot 5 + 4 \cdot 5t + 5 \cdot 5 - 30}{\sqrt{66}} \right| = \left| \frac{20 + 20t}{\sqrt{66}} \right| = \frac{18}{\sqrt{66}}$$

Für die Betragsgleichung gibt es zwei Fälle:

Fall 1:
$$20 + 20t = 18 \Rightarrow t = -0.1$$
 liegt nicht im Intervall $0 \le t \le 1$

Fall 2:
$$20 + 20t = -18 \Rightarrow t = -1.9$$
 liegt nicht im Intervall $0 \le t \le 1$

Somit kann die Höhe der Pyramide nicht $\frac{18}{\sqrt{66}}$ betragen.

c) Schnittpunkt der Geradenschar mit der Ebene:

$$3,5+r\cdot\frac{2}{a}=3,5\Rightarrow r\cdot\frac{2}{a}=0$$

Wenn die Gerade in Ebene liegen soll, muss eine wahre Aussage entstehen und die Variable r herausfallen.

Das wäre jedoch nur so, wenn $\frac{2}{a} = 0$ ist. Diese Gleichung ist jedoch nicht lösbar.

Somit kann keine der Schargeraden in der Ebene liegen.

Eine Gerade der Schar ist eine Schnittgerade unter folgenden Bedingungen:

1.) Der Punkt P(2,5|0|3,5) der Schar auf den Ebenen T und U liegen.

Punktprobe mit T: $5 \cdot 2,5 + 0 + 5 \cdot 3,5 = 30$ ist eine wahre Aussage Punktprobe mit U: $-5 \cdot 2,5 + 0 + 5 \cdot 3,5 = 5$ ist eine wahre Aussage

2.) Der Richtungsvektor der Schar muss sowohl senkrecht zum Normalenvektor von T als auch zum Normalenvektor von U sein.

$$\begin{pmatrix} 0 \\ -10a \\ \frac{2}{a} \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 4 \\ 5 \end{pmatrix} = 0 \Rightarrow -40a + \frac{10}{a} = 0 \Rightarrow -40a^2 + 10 = 0 \Rightarrow a = \pm 0,5$$

Da a > 0 sein soll, kommt nur a = 0,5 in Frage.

Prüfung, ob für a = 0,5 der Richtungsvektor der Schargeraden auch auf dem Normalenvektor von U senkrecht ist:

Es gilt
$$\begin{pmatrix} 0 \\ -5 \\ 4 \\ 5 \end{pmatrix} = 0 - 20 + 20 = 0$$
.

Damit ist die Bedingung für a = 0,5 erfüllt.

Also gehört die Schnittgerade von T und U zur Schar.