
Lösungen (Teil ohne Hilfsmittel)

to So gibt 5 ungrade Ziffern: 1,3,5,7,9.

For den mittleren Ring gibt es nur noch

5 Möglichseiten; für die beiden anderen

weiter 10.

Anzahl = 10.5.10

= 10².5

= 500

c) Anzahl = 10.9.8 = 720

Tor den ersten Ring gibt es 10 Möglichseiten,
für den

0						4 11	
MO	0)	MI	DO	FR	A2	SO	
					×	X	1
			×	X	X		3
	×	×			X		4
×				X	×	X	6 7
			Y				8

Coll VRNE 1

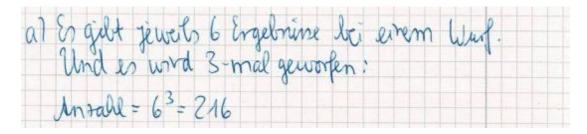
VRNE 1

VRNE 2

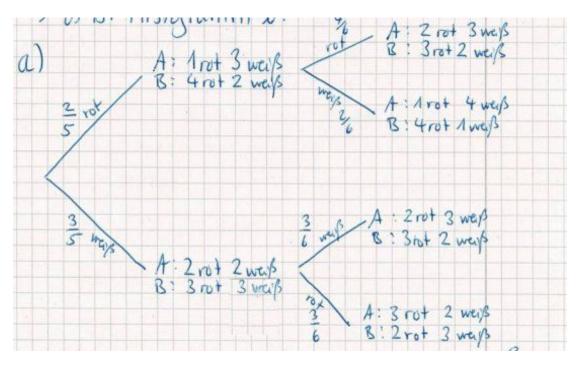
a)
$$\frac{2}{5}$$
 weiß $\frac{4}{6}$ weiß $\frac{4}{6}$ weiß $\frac{4}{6}$ blan

2/5 weiß $\frac{4}{6}$ blan

2/5 weiß $\frac{4}{6}$ blan


2/5 weiß $\frac{4}{6}$ blan

2/5 blan $\frac{2}{6}$ weiß


V1

V2

P(ogenan eine weiß) = $\frac{3}{5}$ $\frac{4}{6}$ + $\frac{2}{5}$ $\frac{2}{6}$ = $\frac{12}{30}$ + $\frac{4}{30}$ = $\frac{16}{30}$ = $\frac{16}{30}$ = $\frac{8}{30}$ = $\frac{8}{30}$ = $\frac{8}{30}$ = $\frac{8}{30}$ = $\frac{1}{30}$ = $\frac{1}{30$

- b) Es gibt drei gerade Zahlen: 2, 4 und 6. Daher gibt es drei Möglichkeiten beim einmaligen Werfen. Beim zweiten und beim dritten Wurf gibt es auch jeweils drei Möglichkeiten. Damit ergibt sich eine Anzahl von 3³ = 27 Ergebnissen insgesamt. Damit erhalten wir eine Wahrscheinlichkeit von 27 / 216. Oder in gekürzter Form: 1 / 8.
- c) Es gibt drei Möglichkeiten, wo die eine gerade Zahl auftaucht: am Anfang, in der Mitte und am Ende. Jede dieser drei Möglichkeiten hat wieder 27 Ereignisse (zum Beispiel am Anfang: 3 gerade Zahlen, dann 3 ungerade Zahlen und schließlich 3 ungerade Zahlen also 3 mal 3 mal 3 Ergebnisse). Damit ergibt sich 3 mal 27 / 216 als Wahrscheinlichkeit. Das ergibt 3 / 8.

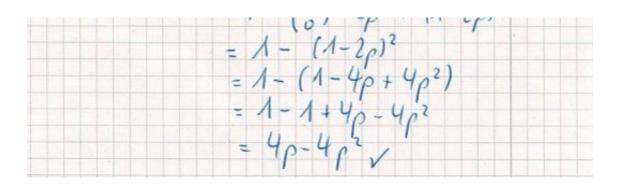
Möglichseiten:
$$2 \text{ rot } 3 \text{ weys}$$

A rot 4 weys
 $3 \text{ rot } 2 \text{ weys}$

A) $f(2 \text{ rot } 3 \text{ weys}) = \frac{2}{5} \cdot \frac{4}{6} \cdot \frac{3}{5} \cdot \frac{3}{6}$

$$= \frac{8}{30} + \frac{9}{30}$$

$$= \frac{17}{30}$$


$$= \frac{17}{30}$$
Antwort: Enzymis E hot eine höhre
Walronleinlinkseit.

(a)
$$p + 2p + P(gell) = 1$$

 $3p + P(gell) = 1$
 $P(gell) = 1 - 3p$
P(gell) mun größe als 0 und Sleiner als 1
sein
 $\Rightarrow 0 \le p \le \frac{1}{3}$

b) Wir erhalten "Rot" mit der Wahrscheinlichkeit P(rot) = 2p. Damit ergibt sich P (nicht rot) = 1- 2p. Wir drehen das Glücksrad 2-mal, die Wahrscheinlichkeit für 2mal "nicht Rot" ist dann (1-2p)².

Anschließend arbeiten wir mit dem Gegenereignis: Das Gegenereignis zu mind. ein Mal rot ist kein Mal rot.

P (mind. ein Mal Rot) =
$$1 - P$$
 (kein Mal Rot)
= $1 - (1-2p)^2$

Wenn eine Eahl eine Will am Ende hat, so
ist sie durch 2 und 5 teillar. 2 und 5
sind in ihrer Primjahter zerleging enthalten
Wenn eine Fahl zwai Willen am Inde hat, so
ist sie 2-mel jewils dung 2 md 5 teilbar.
2 und 5 sind 2-mal in der frimfasterzerleging.
allamen:
Wenn une Eahl n Willen Lat am Inde, so ist
me n-mal dunk jeweits 2 und 5 teilbar und
sie hat in ihrer frim jasterzerleging n-mel 2 und 5.
Die Adinition der Fasseltat alnelt der frimfasterzerleging:

Die Zahl 20! hat bedingt durch die Fastoren
5, 10, 15, 20 jeweb eine S in de Primfostorterlegeng. Da die anderen Fastoren durch S milt
teilbar sind, sind es inspesamt vier 5en.
tru jeder der Sen dann eine 2 gefanden werden
(7.8.2, 4, 6, 8, 12).

=> Die Primfastorerlegeng hat vier 5en ind
mind. vier 2en

=> vier Kullen

$$\Rightarrow -Sy - 10 = -15$$

$$-Sy = -S$$

$$y = 1$$

$$\Rightarrow x - 2 - 3 = -3$$

$$x = 2$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & | & 5 \\ -3 & 1 & | & -1 \end{pmatrix} 3 \cdot T + T$$

$$\begin{pmatrix} 1 & 2 & | & 5 \\ 0 & 7 & | & 14 \end{pmatrix}$$

$$\Rightarrow 7y = 14$$

$$y = 2$$

$$\Rightarrow x + 4 = 5$$

$$x = 1$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

a)	$ \begin{pmatrix} 2 & 3 & 5 & 13 \\ -2 & 2 & 0 & -8 & \boxed{1+11} \\ 0 & 1 & 1 & 2 \end{pmatrix} $
	$\begin{pmatrix} 2 & 3 & 5 & 13 \\ 0 & 5 & 5 & 5 \\ 0 & 1 & 1 & 2 & 1 \text{II} - 5 \cdot 1 \text{II} \end{pmatrix}$
	$ \begin{pmatrix} 2 & 3 & 5 & 13 \\ 0 & 5 & 5 & 5 \\ 0 & 0 & 0 & -5 \end{pmatrix} $
	=> 0 = -5 ½ Das System hat Keine Lösung.
4)	$\begin{pmatrix} 2 & 3 & 5 & & 13 \\ -2 & 2 & 0 & & -8 \\ 0 & 1 & 1 & & a \end{pmatrix} I + II$
	$ \begin{pmatrix} 2 & 3 & 5 & & 13 \\ 0 & 5 & 5 & & 5 \end{pmatrix} $ $ \begin{pmatrix} 0 & 1 & 1 & & 0 & & 0 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 2 & 3 & 5 & & 13 & & 0 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 2 & 3 & 5 & & 13 & & 0 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 2 & 3 & 5 & & 13 & & 0 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 2 & 3 & 5 & & 13 & & 0 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 5 & & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & 5 & & 5 & & 5 & & 5 & & 5 & & 5 & & 5 & & 5 & & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 5 & 5 & & $

Es müsste gelten:
$$5-5a=0$$

 $\Rightarrow a=1$

a) Wir setzen den Punkt P_b in die Ebenengleichung ein:

$$1 + 2 \cdot (-2) - 2 \cdot b = 2$$

$$1 - 4 - 2b = 2$$

$$-3 - 2b = 2$$

$$-2b = 5$$

$$b = -2.5$$

b) Für a = 0 erhalten wir als Ebene G: 3x + 4y = 1

Wir erhalten als Normalenvektor $\vec{n} = \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$ und für seinen Betrag

 $|\vec{n}| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$. Mit x = 0 erhalten wir 4y = 1, also y = 0,25. Ein Aufpunkt ist also A (0/0,25/0).

Damit bilden wir die Hessesche Normalenform:

$$\frac{1}{5} \cdot \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} \odot \left(\begin{pmatrix} 1 \\ -2 \\ b \end{pmatrix} - \begin{pmatrix} 0 \\ 0,25 \\ 0 \end{pmatrix} \right) = \frac{1}{5} \cdot \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} \odot \begin{pmatrix} 1 \\ -2,25 \\ b \end{pmatrix} = \frac{1}{5} \cdot (3-9) = \frac{-6}{5} = -1,2$$

Der Abstand beträgt 1,2 LE.

c) Die Ebenen sind orthogonal zueinander, wenn die Normalenvektoren zueinander senkrecht sind.

$$\begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \odot \begin{pmatrix} 3 \\ 4 \\ a \end{pmatrix} = 0$$

$$3+8-2a=0$$

$$11-2a=0$$

$$-2a=-11$$

$$a=5,5$$

Aufgabe 13

a) Die Gerade ist parallel zur Ebene, wenn der Normalenvektor der Ebene und der Richtungsvektor der Geraden senkrecht zueinander sind.

$$\begin{pmatrix} 2a \\ -4 \\ a-2 \end{pmatrix} \odot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = 0$$

$$-2a+a-2=0$$

$$-a-2=0$$

$$a=-2$$

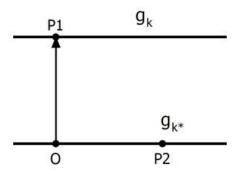
b) Es gilt:

$$6x - 8y + z = 24$$
 durch 2
 $3x - 4y + 0.5 = 12$

Diese Gleichung vergleichen wir mit Ea:

$$2ax - 4y + (a-2)z = 12$$

Die Werte bei y und rechts vom Gleichzeichen stimmen überein. Es müsste gelten:


$$2a = 3$$
 und $a-2 = 0.5$ $a = 1.5$ $a = 2.5$

Wir erhalten nicht denselben Wert für a. Die Ebene liegt daher nicht in der Schar.

Aufgabe 14

 a) Alle Geraden sind zueinander parallel, da sie denselben Richtungsvektor besitzen.

b)

Wenn der Punkt P ein benachbarter Punkt von O ist gibt es zwei Möglichkeiten:

1.Möglichkeit:

Die Punkte O und P (in der Zeichnung mit P1 bezeichnet) liegen auf zwei unterschiedlichen Geraden der Schar.

Dies ist der Fall, wenn der Vektor OP und der Richtungsvektor der Gerade orthogonal zueinander sind.

Da
$$\begin{pmatrix} 11\\4\\5 \end{pmatrix} \cdot \begin{pmatrix} 4\\8\\1 \end{pmatrix} = 44 + 32 + 5 = 81 \neq 0$$
 ist, sind die Vektoren nicht orthogonal

zueinander, also scheidet die 1. Möglichkeit aus.

2.Möglichkeit:

Die Punkte O und P (in der Zeichnung mit P2 bezeichnet) liegen auf derselben Schargerade.

Einsetzen des Punktes O(0|0|0) in die Schargerade:

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} k \\ -4k \\ k \end{pmatrix} + \mu \cdot \begin{pmatrix} 4 \\ 8 \\ 1 \end{pmatrix} \qquad \begin{array}{c} 0 & = & k+4\mu \\ \Leftrightarrow 0 & = & -4k+8\mu \\ 0 & = & k+\mu \end{array}$$

Zeile (1) – Zeile (3):
$$0 = 3\mu \Leftrightarrow \mu = 0$$

Einsetzen in Zeile ergibt $k = 0$.

Der Ursprung O liegt auf der Gerade
$$g_0 : \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} 4 \\ 8 \\ 1 \end{pmatrix}$$

Kontrolle, ob der Punkt P(11|4|5) auf g₀ liegt:

$$\begin{pmatrix} 11 \\ 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} 4 \\ 8 \\ 1 \end{pmatrix}$$

Aus Zeile (3) folgt
$$\mu = 5$$

Aus Zeile (2) folgt $\mu = 0.5$.

Daher liegt P nicht auf g₀.

Damit scheidet auch die Möglichkeit 2 aus.

Somit sind O und P keine benachbarten Eckpunkte des Quadrats.

Aufgabe 15

a) Aus der Geradengleichung kann aus den Zeilen entnommen werden: $x_1 = t$ und $x_2 = 1$ und $x_3 = 1 - t$

Einsetzen in die Ebenengleichung ergibt: t+1+(1-t)=2Daraus ergibt sich die wahre Aussage 2 = 2. Damit liegt g in der Ebene E. b) Zunächst wird geprüft, ob die Richtungsvektoren für einen bestimmten Wert von a Vielfache sein können:

$$\begin{pmatrix} 1 \\ a \\ 0 \end{pmatrix} = k \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

Aus der 1.Zeile ergibt sich k = 1.

Aus der 3.Zeile ergibt sich 0 = -1, also ein Widerspruch. Somit sind die Richtungsvektoren für jeden Wert von a keine Vielfache zueinander.

Gleichsetzen der Geradengleichungen:

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ a \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

3.Zeile: $1=1-t \Leftrightarrow t=0$

1.Zeile: $s = t \Rightarrow s = 0$

2.Zeile: $s \cdot a = 1 \Rightarrow 0 \cdot a = 1$ ergibt einen Widerspruch

Das Gleichungssystem ist nicht lösbar, daher sind die Geraden für jeden Wert von a windschief.