OSVNGEN (TEIL A)

AUFGABE 1

a)
$$2^3 = 8$$
b) $4^{-1} = \frac{1}{4}$

c)
$$(-3)^3 = -27$$

d) $9^{\frac{1}{2}} = \sqrt{9}^{\frac{1}{2}} = 3$

d)
$$g^{\frac{1}{2}} = \sqrt[2]{g} = 3$$

e) $4^{-2} = \frac{1}{4^2} = \frac{1}{16}$

AUFGABE 2

a)
$$x^3 = 27$$

 $x = 3$

$$x = 3$$

$$\begin{array}{c} x^3 = -8 \\ x = -2 \end{array}$$

$$x = -2$$

$$X_{\lambda} = 2$$

$$X_{z} = -2$$

$$\begin{cases} 1 & 4^{-\frac{1}{2}} = \frac{1}{2\sqrt{4}} = \frac{1}{2} \\ 1 & 3 = 3\sqrt{8} = 2 \end{cases}$$

$$\begin{cases} 1 & 3 = 3\sqrt{8} = 2 \\ 2\sqrt{4} & 3 = 2 \end{cases}$$

$$\begin{cases} 1 & 3 = 2\sqrt{4} & 3 = 2 \end{cases}$$

$$\begin{cases} 1 & 3 = 2\sqrt{4} & 3 = 2 \end{cases}$$

$$\mathbb{R}$$
) $4^{\frac{3}{2}} = (2\sqrt{4})^3 = 2^3 = 8$

$$x=3$$
 (denn 2^3-8)

$$x = 4 (denn 2^2 = 4)$$

i)
$$x^{3} = 1$$
 $x = 1$

l) $\log_{3}(s) + 1 = x$
 $2 + 1 = x$

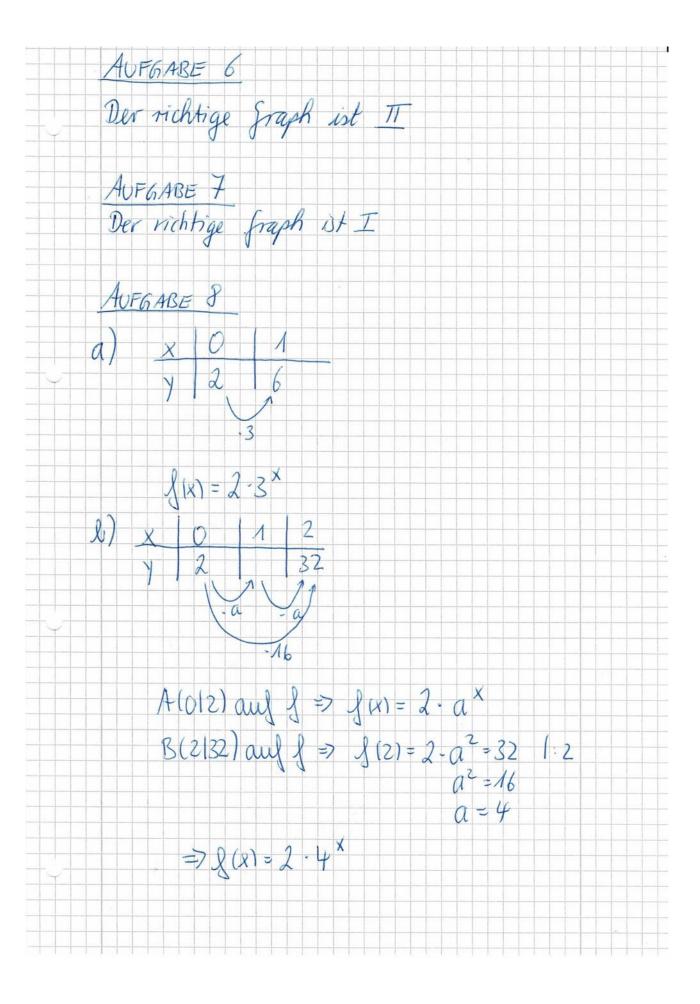
j) $\log_{3}(1) = x$
 $x = 0$ (denn $3^{\circ} = 1$) (denn $3^{2} = 9$)

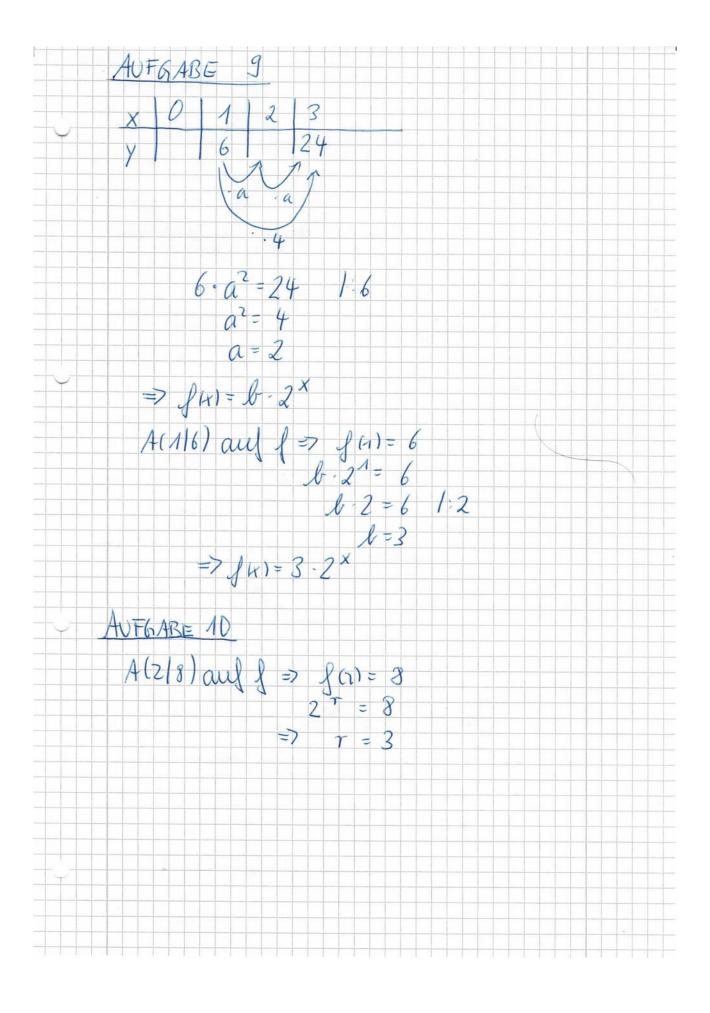
 $\log_{3}(x) = 3$
 $x = 27$ (denn $3^{3} = 27$)

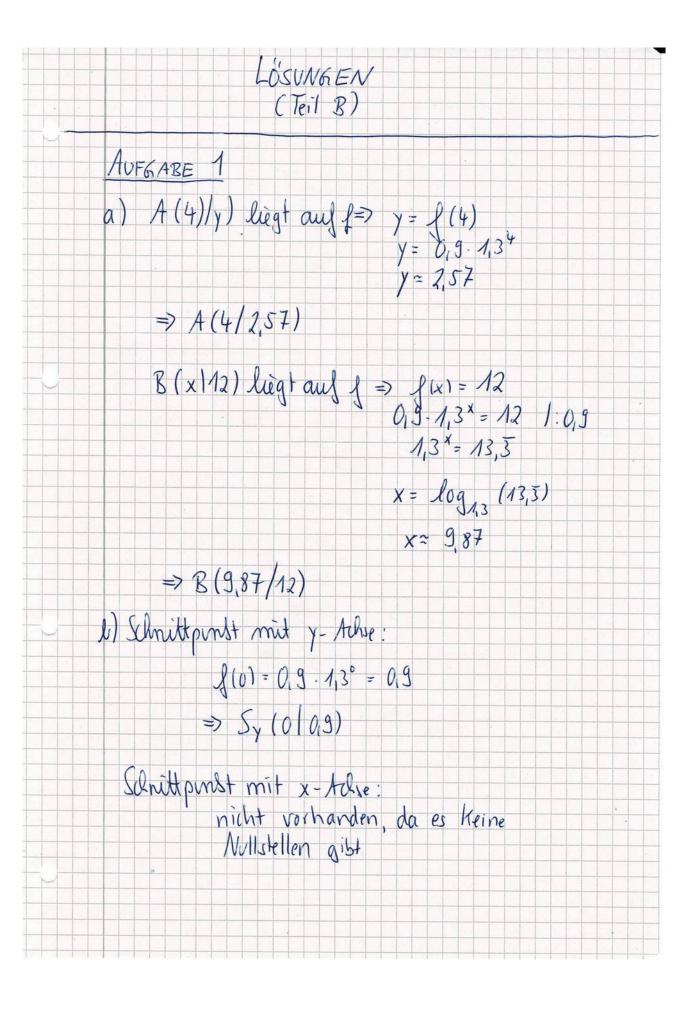
AUF6ABE 3

a)
$$x^{-3} = \frac{4}{x^3}$$

b) $x^{0.5} = 2\sqrt{x^3}$


c) $x^{\frac{1}{5}} = 3\sqrt{x^4}$


d) $x^{0.5} = 2\sqrt{x^3}$


e) $x^{0.5} = 2\sqrt{x^3}$

e) $x^{0.5} = 2\sqrt{x^3}$
 $x^{\frac{1}{5}} = 2\sqrt{x^3}$
 $x^{\frac{1}{5}} = 2\sqrt{x^3}$

AUFG ABE 4	
a) $3\sqrt{x} = x^{\frac{4}{3}}$	
M 3 x = X 4/3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\frac{1}{3\sqrt{x}} = x^{-\frac{4}{3}}$	
AUF6ABE 5	
a) $3x + 9 = 0$ b) $3x = -9$	$x^{2} + 2x - 8 = 0$ $x = -1 \pm \sqrt{1 + 8}$
x = -3	$x = -1 \pm \sqrt{9}$ $x = -1 \pm 3$
	$X_1 = -4$ $X_2 = 2$
c) $4x^2 + 8x - 12 = 0$ 1:4 $x^2 + 2x - 3 = 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$x = -1 \pm \sqrt{1+3}$	x = O
x=-1± 14' x=-1±2	e) $4x^2 = 0$ $4x^2 = 0$
x, = -3 y ₂ = 1	4=0 & Keine Nollskelle
	3.2×=05 Maine Nullstelle

c)
$$f(x) = g(x)$$

 $0.9 \cdot 1.3^{x} = 2.0.8^{x}$ | 0.8^{x} | $0.8^{x} \neq 0$ | $0.8^{x} \neq 0$ | $0.8^{x} \neq 0$ | $0.8^{x} = 20$ |

AUEGABE 2

a) A (4/y) light and
$$f \Rightarrow f(4) = y$$

$$2 - 4^4 = y$$

$$\Rightarrow A(4/512)$$

$$512 = y$$

B(x|12) liegt auf
$$J \Rightarrow J(x) = 12$$

2-x⁴ = 12 | 2
x⁴ = 6 | 4/7
x, = 1,57
x₁ = -1,57
=> B, (1,57/12)
B₂ (-1,57/12)

b) Wenn C (3 / 160) auf f liegt, dann gilt:

f(3) = 160

 $2 \cdot 3^4 = 160$

 $2 \cdot 81 = 160$

162 = 160 (falsche Aussage)

Da wir eine falsche Aussage erhalten, kann C nicht auf f liegen.

Shandelt sich um Graph II

fragh I zeigt eine quadratische Fonstion.

J(2)=2.24=2.16=32

Bei fragh II ist aber J (2)=4

Graph III verläuft linss von x=0 im
Negativen. Der fragh von f müsste abu im
Positiven verlaufen.

fragh IV gehört w einer Exponentialfunstion.

AUFGABE 3

a)
$$f(0) = 12 \cdot 1.2^{\circ} = 12$$

=> Lie hultur is + 12 cm² graß.

b) $f(0) = 12 \cdot 1.2^{\circ} = 12$
 $f(0) = 12 \cdot 1.2^{\circ} = 12$
 $f(0) = 12 \cdot 1.2^{\circ} = 12$

c) von 10 bis 14:30 Uhr: 4,5 Studen

 $f(4,5) = 12 \cdot 1.2^{4,5} = 27.26$
 $f(0) = 12 \cdot 1.2^{4,5} = 27.26$
 $f(0) = 12 \cdot 1.2^{4,5} = 27.26$

d) von 9 bis 10 Uhr: 1 Strade $3(-1) = 12 \cdot 1/2^{-1} = 10$ $\Rightarrow 8 \cdot \text{waren } 10 \text{ cm}^2$.

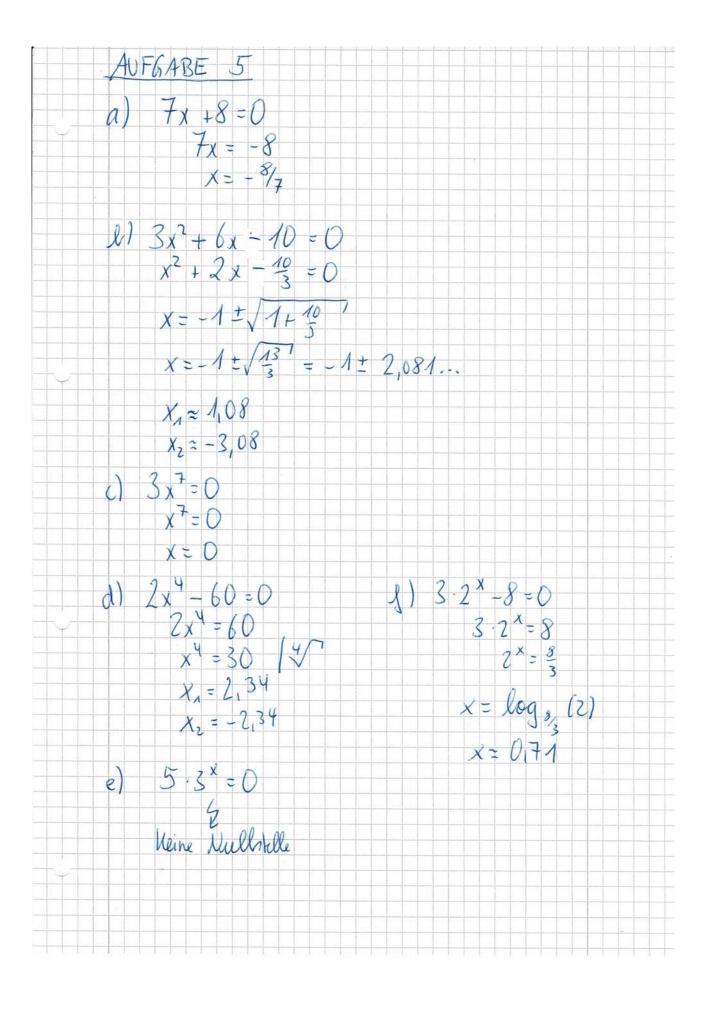
e) 3(x) = 20 $1/2 \cdot 1/2 \cdot 1/2$

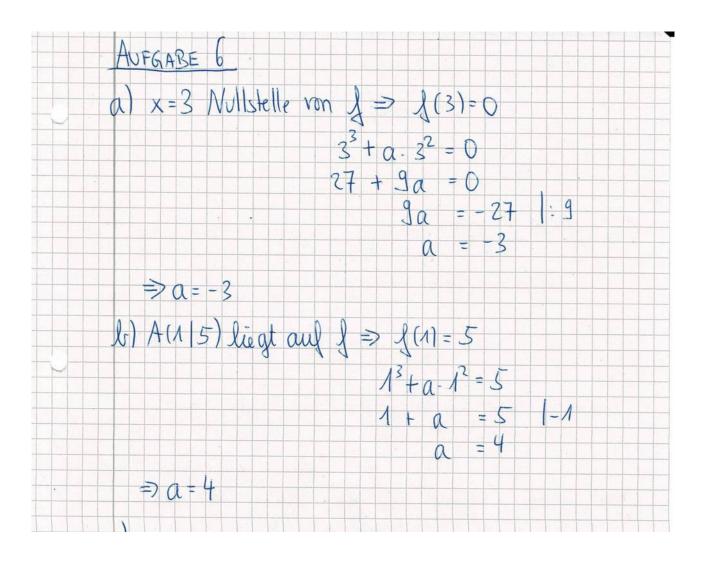
g) f(x) = g(x) $12 \cdot 1_1 2^x = 6 \cdot 1_1 5^x | : 12$ $1_1 2^x = 0_1 5 \cdot 1_1 5^x | : 1_1 5^x (1_1 5^x \neq 0)$ $\frac{1_1 2^x}{1_1 5^x} = 0_1 5$ $\frac{1_1 5^x}{1_1 5^x} = 0_1 5$ $\frac{1_1 5^x}{1$ h) $h(x) = 20.0.9^{\times}$ x: Zeit ab 9 Uhr h(1) = 20.0.9 = 18 Grafe um 10 Uhr $h_{\text{neu}}(x) = 18.0.9^{\times}$ $12.1.2^{\times} = 18.0.9^{\times}$ | .12 $1.2^{\times} = 1.5 \cdot 0.9^{\times}$ | .0.9 \(0.9^{\times} \neq 0) $\frac{1}{12} = 1.5 \cdot 0.9^{\times}$ | .0.9 \(0.9^{\times} \neq 0) $\frac{1}{12} = 1.5 \cdot 0.9^{\times}$ | .0.9 \(0.9^{\times} \neq 0) $\frac{1}{12} = 1.5 \cdot 0.9^{\times}$ | .0.9 \(0.9^{\times} \neq 0) $\frac{1}{12} = 1.5 \cdot 0.9^{\times}$ | .0.9 \(0.9^{\times} \neq 0) $\frac{1}{12} = 1.5 \cdot 0.9^{\times}$ | .0.9 \(0.9^{\times} \neq 0) $\frac{1}{12} = 1.5 \cdot 0.9^{\times}$ | .0.9 \(0.9^{\times} \neq 0) $\frac{1}{12} = 1.5 \cdot 0.9^{\times}$ | .0.9 \(0.9^{\times} \neq 0.9^{\times} \neq 0.9^{\times} \neq 0.9 \(0.9^{\times} \neq 0.9 \neq 0.9 \) $\frac{1}{12} = 1.5 \cdot 0.9^{\times} = 1.5 \cdot 0.9^{\times} = 1.5 \cdot 0.9 \(0.9^{\times} = 1.5 \cdot 0.9^{\times} = 1.5 \)

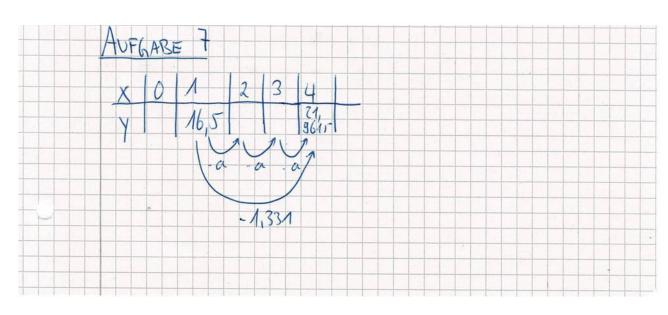
<math>\frac{1}{12} = 1.5 \cdot 0.9^{\times} = 1.5 \cdot 0.9^{\times} = 1.5 \cdot 0.9 \(0.9^{\times} = 1.5 \)

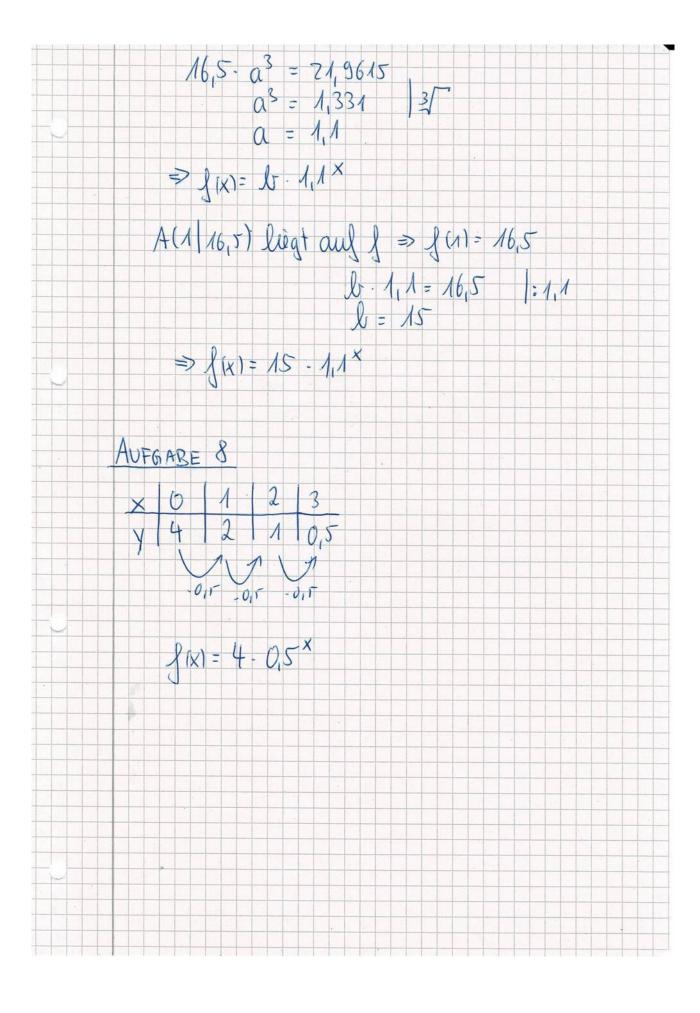
<math>\frac{1}{12} = 1.5 \cdot 0.9^{\times} = 1.5 \cdot 0.9 \(0.9^{\times} = 1.5 \)

<math>\frac{1}{12} = 1.5 \cdot 0.9^{\times} = 1.5 \cdot 0.9 \(0.9^{\times} = 1.5 \)


<math>\frac{1}{12} = 1.5 \cdot 0.9^{\times} = 1.5 \cdot 0.9 \(0.9^{\times} = 1.5 \)


<math>\frac{1}{12} = 1.5 \cdot 0.9 \cdot$


AUF6ABE 4


a)
$$\int [x] = 28 \cdot 3^{\times}$$

b) $\exists 5 \text{ min} = 1 + 0.25 + 0.00 + 0.000}$
 $\int (1.25) = 28 \cdot 3^{1.25} = 1.00,55$
 $\Rightarrow \text{Die kultur hat eine frijk von (a. 1.00)} = 1.28$
 $3^{\times} = 100$
 $28 \cdot 3^{\times} = 100$
 $3^{\times} = 10$

